Branching Random Walk in a Catalytic Medium. I. Basic Equations

نویسندگان

  • SERGIO ALBEVERIO
  • LEONID V. BOGACHEV
چکیده

Abstract. We consider a continuous-time branching random walk on the integer lattice Zd (d > 1) with a finite number of branching sources, or catalysts. The random walk is assumed to be spatially homogeneous and irreducible. The branching mechanism at each catalyst, being independent of the random walk, is governed by a Markov branching process. The quantities of interest are the local numbers of particles (at each site) and the total population size. In the present paper, we derive and analyze the Kolmogorov type backward equations for the corresponding Laplace generating functions and also for the successive integer moments and the process extinction probability. In particular, existence and uniqueness theorems are proved and the problem of explosion is studied in some detail. We then rewrite these equations in the form of integral equations of renewal type, which may serve as a convenient tool for the study of the process long-time behavior. The paper also provides a technical foundation to some results published before without detailed proofs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Longtime Behavior of Branching Random Walk in a Catalytic Medium

We consider catalytic branching random walk (the reactant) where the state space is a countable Abelean group. The branching is critical binary and the local branching rate is given by a catalytic medium. Here the medium is itself an autonomous (ordinary) branching random walk (the catalyst) – maybe with a different motion law. For persistent catalyst (transient motion) the reactant shows the u...

متن کامل

Individuals at the origin in the critical catalytic branching random walk

At the birth moment the newborn particles are located at the origin but after this moment behave independently and stochastically the same as the parent individual. The model we consider here is a particular case of the so-called branching random walk in catalytic medium. The longtime behavior of branching random walks in catalytic media of various types were investigated by a number of authors...

متن کامل

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

The longtime behavior of branching random walkin a catalytic

Consider a countable collection (t) of particles located on a countable group, performing a critical branching random walk where the branching rate of a particle is given by a random medium uctuating both in space and time. Here we study the case where the time{space random medium (t) (called catalyst) is also a critical branching random walk evolving autonomously while the local branching rate...

متن کامل

A PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS

A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999